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Abstract

Surface-bonded piezoelectric actuators can be used to generate elastic waves for monitoring damages of composite
materials. This paper provides an analytical and numerical study to simulate wave propagation in an anisotropic med-
ium induced by surface-bonded piezocermic actuators under high-frequency electric loads. Based on a one-dimensional
actuator model, the dynamic load transfer between a piezoceramic actuator and an anisotropic elastic medium under in-
plane mechanical and electrical loading is obtained. The wave propagation induced by the surface-bonded actuator is
also studied in detail by using Fourier transform technique and solving the resulting integral equations in terms of the
interfacial shear stress. Typical examples are provided to show effects of the geometry, the material combination, the
loading frequency and the material anisotropy of the composite upon the load transfer and the resulting wave
propagation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of new piezoceramic materials, which are capable of generating larger strains under
electric loads has revived the intense research and development of new piezoceramic actuators for different
structural applications, e.g. large-scale space structures, aircraft structures, satellites, and so forth (Gandhi
and Thompson, 1992; Ha et al., 1992; Varadan et al., 1993). Because of their advantages of quick response,
low power consumption and high linearity, piezoelectric actuators may also be used to induce high fre-
quency elastic wave propagation in different engineering structures for their health monitoring (Fukunaga
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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et al., 2002 and Giurgiutiu et al., 2002). In those applications, surface-bonded actuators have the advanta-
ges that they can be attached to existing structures to form an online monitoring system and minimize the
adverse effects on structures by avoiding internal weak points induced by embedded actuators for cases
where the effects of these inclusions are significant. The most fundamental issue surrounding the effective
use of surface-bonded piezoelectric actuators in this type of applications is the evaluation of the load trans-
fer and the generated wave propagation for different actuator designs and arrangements, especially for the
anisotropic host medium which makes evaluation of the results more difficult.

Crawley and de Luis (1987) first analyzed a beam-like structure with surface bonded and embedded thin
sheet piezoelectric actuators to study the load transfer between the actuator and the host beam. In that
analysis, the axial stress in the actuator was assumed to be uniform across its thickness and the host struc-
ture was treated as a Bernoulli–Euler beam. This model was further modified using a Bernoulli–Euler
model of a piezoelectric actuator by considering the linear stress distribution along its thickness (Crawley
and Anderson, 1990). Im and Atluri (1989) further modified the actuator model presented by Crawley and
de Luis (1987) by considering both the axial and the transverse shear forces in the beam. A refined actuator
model based on the plane stress condition was presented for a beam structure with symmetrically surface-
bonded actuator patches (Lin and Rogers, 1993a,b). Recently, Zhang et al. (2003) presented a method to
analyze a piezoelectric layer surface bonded to an isotropic elastic medium to consider the fully coupled
electromechanical behaviour.

Plate and shell models have been extensively used in modeling piezoelectric structures. Wang and Rogers
(1991) modified the classical laminated plate theory to model actuator-induced bending and extension of
laminated plates under static loading. Tauchert (1992) further investigated the control of thermal deforma-
tion of laminated plates using piezoelectric actuators. Typical examples also include the work by Mitchell
and Reddy (1995), Banks and Smith (1995), Reddy (1997), Han and Lee (1998) and Reddy (1999). Finite
element method is currently also being used for active vibration and noise control of piezoelectric structures
(Tzou and Ye, 1994; Lim et al., 1999; for example).

In spite of the fact that different methods have been developed to treat piezoelectric structures, existing
work has mainly been focused on the global response of these systems (Wang and Meguid, 2000). Because
of the difficulties association with the complicated electromechanical coupling, material inhomogeneity and
anisotropy, solutions representing the dynamic local electromechanical behaviour around piezoelectric
actuators have not been properly established. Recently, Wang and Huang (2001) studied the load transfer
between a thin piezoelectric actuator and an anisotropic host medium for the static cases. The singular
stress field around the actuator tips was studied.

The present article is concerned with the development of an analytical solution to describe dynamic
coupled electromechanical behaviour of a piezoceramic actuator bonded to an infinite orthotropic elastic
medium under in-plane mechanical and electrical loads, especially for high frequency cases. The actuator
was characterized using a one-dimensional model. The load transfer between the piezoelectric actuator
and the host structure was determined by using Fourier transform technique and solving resulting integral
equations in terms of the interfacial shear stress. Specifically, two aspects of the work were examined. The
first is concerned with determining the effect of the geometry, loading frequency, the material mismatch and
the material anisotropy upon the load transfer between the actuator and the host structure, while the sec-
ond is concerned with wave propagation in the anisotropic host medium.
2. Formulation of the problem

Consider now the plane strain problem of a thin piezoceramic actuator bonded to a homogeneous aniso-
tropic elastic medium, as illustrated in Fig. 1. The poling direction of the actuator is along the z-axis and the
half length and the thickness of the actuator are denoted a and h, respectively. A voltage between the upper



Fig. 1. An actuator surface-bonded to a host medium.
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and the lower electrodes of the actuator is applied, which results in an electric field of frequency x along the
poling direction of the actuator, Ez = (V� � V+)/h. For the steady state response of the system discussed in
this paper, the time factor exp(�ixt), which applies to all the field variables, will be suppressed.

2.1. Modelling of the actuator

Attention will be focussed on a thin-sheet actuator, for which the thickness is small compared with its
length. When an electric field Ez is applied across its thickness along the poling direction, the actuator is
deformed in both axial and transverse directions. Because the thickness of the actuator used is very small
in comparison with its length, the applied electric field will mainly result in a deformation along the axial
direction. Accordingly, the actuator can be modelled as an electroelastic element subjected to the applied
electric field and the distributed interfacial stresses, as shown in Fig. 2. In this figure, s represents the inter-
facial shear stress transferred between the actuator and the host medium. It is assumed that the stress ra

y

and displacement uay are uniform across the actuator. Therefore, the equation of motion of the actuator
along the axial direction can be expressed as
dra
y

dy
þ sðyÞ=hþ qax

2uay ¼ 0; ð1Þ
where qa is the mass density of the actuator.
Under plane strain deformation, the axial stress in the actuator ðra

yÞ can be expressed as
ra
y ¼ Eae

a
y � eaEz; ð2Þ
where Ea and ea are effective elastic and piezoelectric material constants given in Appendix A and the strain
component is given by
eay ¼
duay
dy

: ð3Þ
Since the load transferred between the actuator and the host medium can be attributed to s, the two ends
of the actuator can be assumed to be traction free, i.e.
ra
y ¼ 0; jyj ¼ a: ð4Þ
Fig. 2. Actuator model.
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The axial strain and the transverse stress of the actuator can then be obtained in terms of the interfacial
shear stress s by solving Eq. (1) as
eayðyÞ ¼ eEðyÞ þ
sin kaðaþ yÞ
hEa sin 2kaa

Z a

�a
cos kaðn� aÞsðnÞdn�

Z y

�a
cos kaðn� yÞ sðnÞ

hEa

dn; ð5Þ
where
eEðyÞ ¼
eaEz

Ea

cos kay
cos kaa

ð6Þ
and
ka ¼ x=ca; ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ea=qa

p
ð7Þ
with ka and ca being the wave number and the axial wave speed of the actuator, respectively.

2.2. Elastic field in the host structure

Consider now the deformation of the host orthotropic elastic medium with the principal elastic axes
being parallel to y and z axes. The solution of the displacement components can be obtained by solving
the governing equations of the problem using Fourier transform technique, as shown in Appendix B.
The governing equations in Fourier transform domain can be expressed as
c33
o2uy
o2z

þ ðqx2 � c11s2Þuy � isðc12 þ c33Þ
ouz
oz

¼ 0; ð8Þ

c22
o2uz
o2z

þ ðqx2 � c33s2Þuz � isðc12 þ c33Þ
ouy
oz

¼ 0; ð9Þ
where c11, c22, c12 and c33 are material constants given in Appendix B, x is the input loading frequency,
uz and uy represent the displacement components along z and y directions in Fourier transform domain.
The solutions of uz and uy are generally in the form of
uz ¼ Aegz; uy ¼ Begz; ð10Þ

where A, B and g can be determined by solving the following eigenvalue problem
x2
0 � c11s2 þ c33g2 �isgðc12 þ c33Þ
�isgðc12 þ c33Þ x2

0 � c33s2 þ c22g2

" #
A

B

� �
¼ 0 ð11Þ
with x2
0 ¼ qx2.

A solution for the Eq. (11) exists only for those values of g for which the determinant of the coefficient
matrix vanishes. The determinant of the above matrix, when expanded, yields the characteristic equation
for g given by
m1g
4 þ m2g

2 þ m3 ¼ 0; ð12Þ
where
m1 ¼ c22c33; ð13Þ

m2 ¼ ð2c12c33 þ c212 � c11c22Þs2 þ ðc22 þ c33Þx2
0; ð14Þ

m3 ¼ ðx2
0 � c11s2Þðx2

0 � c33s2Þ: ð15Þ
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Eq. (12) admits four solutions for g which, because of the absence of odd-power terms, are related by
g3 ¼ �g1; g4 ¼ �g2 ð16Þ

with
g21 ¼
1

2c22c33
½�ðc22 þ c33Þx2

0 þ ðc11c22 � 2c12c33 � c212Þs2 þ
ffiffiffiffi
m

p
�; ð17Þ

g22 ¼
1

2c22c33
½�ðc22 þ c33Þx2

0 þ ðc11c22 � 2c12c33 � c212Þs2 �
ffiffiffiffi
m

p
�; ð18Þ

m ¼ dx4
0 þ bs4 þ 2cs2x2

0 ð19Þ

and
d ¼ ðc22 � c33Þ2; ð20Þ

b ¼ ðc11c22 � 2c12c33 � c12Þ2 � 4c11c22c233; ð21Þ

c ¼ 2c22c233 þ 2c11c22c33 � ðc22 þ c33Þðc11c22 � 2c12c33 � c212Þ: ð22Þ

The corresponding eigenvectors are obtained as
A ¼ isgðc12 þ c33Þf ðsÞ; B ¼ ðx2 � c11s2 þ c33g2Þf ðsÞ; ð23Þ

where f(s) is the unknown function of s.

The principle of superposition now yields formal solutions of the form
uy ¼ �iðc12 þ c33Þsg1f1ðsÞe�g1z � iðc12 þ c33Þsg2f2ðsÞe�g2z; ð24Þ

uz ¼ ðx2 � c11s2 þ c33g21Þe�g1z þ ðx2 � c11s2 � c33g22Þe�g2z; ð25Þ

where the roots of (12) with positive real parts have been selected to satisfy the infinite boundary require-
ment for the solutions.

The transformed stresses and strains are obtained by substituting the displacements of (24) and (25) into
the constitutive relations to yield
rz ¼ �½ðc12 þ c33Þc12s2 þ c22ðx2 � c11s2 þ c33g21Þ�g1f1ðsÞe�g1z � ½ðc12 þ c33Þc12s2 þ c22ðx2 � c11s2

þ c33g22Þ�g2f2ðsÞe�g2z; ð26Þ

ryz ¼ isc33½c11s2 þ c12g21 � x2�f1ðsÞe�g1z þ isc33½c11s2 þ c12g22 � x2�f2ðsÞe�g2z: ð27Þ

According to the present actuator model, the normal and shear stress components along the surfaces of

the host medium should satisfy
rzðy; 0Þ ¼ 0; ryzðy; 0Þ ¼ �s: ð28Þ

Making use of Eqs. (26)–(28), the strain components ey at z = 0 can be expressed in terms of the shear stress
s as
ey jmatrix ¼
ðc12 þ c33Þ

2pc33

Z 1

�1
sðuÞ

Z 1

�1
is
g1D1 þ g2D2

D
e�isðy�uÞ dsdu; ð29Þ
where
D1ðsÞ ¼ s2ðc212 þ c12c33 � c11c22Þ þ c22x2 þ c22c33g22; ð30Þ
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D2ðsÞ ¼ �½s2ðc212 þ c12c33 � c11c22Þ þ c22x2 þ c22c33g21�; ð31Þ

DðsÞ ¼ ðc11s2 þ c12g21 � x2ÞD1ðsÞ þ ðc11s2 þ c12g22 � x2ÞD2ðsÞ: ð32Þ
2.3. Dynamic load transfer and stress distribution

The continuity between the actuator and the host structure at z = 0 can be described as
eayðyÞ ¼ eyðy; 0Þ jyj < a: ð33Þ
By substituting Eqs. (5) and (29) into Eq. (33), the following integral equation can be obtained
ðc12 þ c33Þ
2pc33

Z 1

�1
sðnÞ

Z 1

�1
is
g1D1 þ g2D2

D
e�isðy�nÞ dsdn� sin kaðaþ yÞ

hEa sin 2kaa

Z a

�a
cos kaðn� aÞsðnÞdn

þ
Z y

�a
cos kaðn� yÞ sðnÞ

hEa

dn

¼ eaEz

Ea

cos kay
cos kaa

: ð34Þ
Asymptotic analysis of g1D1þg2D2

D indicates that
lim
s!1

sðc12 þ c33Þðg1D1 þ g2D2Þ
c33D

¼ 1

E
; ð35Þ
where E is an effective modulus of the host medium given by
E ¼

K1K2ðb2 � b1Þ
ðK1 þ K2Þðc12 þ c33Þ

c33 < 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p � c12
� �

;

K
2

2

K1ðc12 þ c33Þ
c33 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p � c12
� �

;

b4ðK
2

1 þ K
2

2Þ
K1ðc12 þ c33Þ

c33 > 1
2
ð ffiffiffiffiffiffiffiffiffiffiffiffi

c11c22
p � c12Þ;

8>>>>>>>>><
>>>>>>>>>:

ð36Þ
where
K1 ¼ �ðc22c33b2
2 � c11c22 þ c212 þ c12c33Þ; K2 ¼ ðc22c33b2

1 � c11c22 þ c212 þ c12c33Þ;

K1 ¼ 2c22c33b
2
0; K2 ¼ c22c33b

2
0 � c11c22 þ c212 þ c12c33; K1 ¼ 2b3b4c22c33;

K2 ¼ c22c33ðb2
3 � b2

4Þ � c11c22 þ c212 þ c12c13; b0 ¼
ffiffiffiffiffi
u1

p
; b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 � u2

qr
;

b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 � u2

qr
; b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

p þ u1
2

r
b4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

p � u1
2

r
; u1 ¼

c11c22 þ c233 � ðc12 þ c33Þ2

2c22c33
;

u2 ¼
c11
c22

:

Therefore, Eq. (34) is singular integral equation of the first kind, which involves a square-root singularity
of s at the ends of the actuator. The general solution of s can be expressed in terms of Chebyshev polyno-
mials, such that
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sðyÞ ¼
X1
j¼0

cjT jðy=aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=a2

p
ð37Þ
with Tj being Chebyshev polynomials of the first kind.
If the expansions in (37) are truncated to the (N)th term and Eq. (34) is satisfied at the following collo-

cation points along the length of the actuator (Wang and Huang, 2001)
yl ¼ a cos
l� 1

N � 1
p

� �
; l ¼ 1; 2; . . . ;N ; ð38Þ
N linear algebraic equations in terms of {c} = {c1,c2, . . .,cN�1}
T can be obtained as
½Q�fcg ¼ fF g; ð39Þ

where [Q] is a known matrix given in Appendix C and {F} is the applied load with
F l ¼ eEðylÞ l ¼ 1; 2; . . . ;N : ð40Þ

From these equations, the unknown coefficients in {c} can be determined, from which the shear stress s can
be obtained.

The resulting elastodynamic field in the host medium can then be determined from the solutions of s,
using Eqs. (26) and (27), as
ryðy; zÞ ¼
1

2p

Z 1

�1
sðnÞ

Z 1

�1
D1ðsÞe�g1z�isðy�nÞ dsdnþ 1

2p

Z 1

�1
sðnÞ

Z 1

�1
D2ðsÞe�g2z�isðy�nÞ dsdn; ð41Þ

rzðy; zÞ ¼
1

2p

Z 1

�1
sðnÞ

Z 1

�1
D3ðsÞe�g1z�isðy�nÞ dsdnþ 1

2p

Z 1

�1
sðnÞ

Z 1

�1
D4ðsÞe�g2z�isðy�nÞ dsdn; ð42Þ

ryzðy; zÞ ¼
1

2p

Z 1

�1
sðnÞ

Z 1

�1
D5ðsÞe�g1z�isðy�nÞ dsdnþ 1

2p

Z 1

�1
sðnÞ

Z 1

�1
D6ðsÞe�g2z�isðy�nÞ dsdn; ð43Þ
where
D1ðsÞ ¼
�iD1½s2c11ðc12 þ c33Þ � c12ðc33g21 � c11s2 þ x2Þ�

sc33D
;

D2ðsÞ ¼
�iD2½s2c11ðc12 þ c33Þ � c12ðc33g22 � c11s2 þ x2Þ�

sc33D
;

D3ðsÞ ¼
�iD1½s2c12ðc12 þ c33Þ � c22ðc33g21 � c11s2 þ x2Þ�

sc33D
;

D4ðsÞ ¼
�iD2½s2c12ðc12 þ c33Þ � c22ðc33g22 � c11s2 þ x2Þ�

sc33D
;

D5ðsÞ ¼
D1ðs2c11 þ c12g21 � x2Þ

D
;

D6ðsÞ ¼
D2ðs2c11 þ c12g22 � x2Þ

D
:

Using the solution of s given by Eq. (37), the integration in Eqs. (41)–(43) can be simplified as following:
ryðy; zÞ ¼
XN
j¼1

cj
ð�1Þn

R1
0 H 1ðs; zÞJ jðsaÞ cosðsyÞds j ¼ 2nþ 1;

ð�1Þnþ1 R1
0

H 1ðs; zÞJ jðsaÞ sinðsyÞds j ¼ 2n;

(
ð44Þ
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rzðy; zÞ ¼
XN
j¼1

cj
ð�1Þn

R1
0

H 2ðs; zÞJ jðsaÞ cosðsyÞds j ¼ 2nþ 1;

ð�1Þnþ1 R1
0

H 2ðs; zÞJ jðsaÞ sinðsyÞds j ¼ 2n;

(
ð45Þ

ryzðy; zÞ ¼
XN
j¼1

cj
ð�1Þn

R1
0

H 3ðs; zÞJ jðsaÞ sinðsyÞds j ¼ 2nþ 1;

ð�1Þn
R1
0 H 3ðs; zÞJ jðsaÞ cosðsyÞds j ¼ 2n;

(
ð46Þ
where H1(s,z), H2(s,z), H3(s,z) are given by
H 1ðs; zÞ ¼ D1ðsÞe�g1z þ D2ðsÞe�g2z;

H 2ðs; zÞ ¼ D3ðsÞe�g1z þ D4ðsÞe�g2z;

H 3ðs; zÞ ¼ D5ðsÞe�g1z þ D6ðsÞe�g2z:
The stress field is singular near the tips of the actuator. This singular behaviour can be characterized by a
shear stress singularity factor (SSSF), S, defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
Sr ¼ lim
y!a

½ 2pða� yÞsðyÞ�;

Sl ¼ lim
y!�a

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðaþ yÞ

p
sðyÞ�;

ð47Þ
with subscript �r� and �l� representing right and left tips, respectively.
According to this definition, the SSSF can be expressed in terms of cj as being
Sl ¼
ffiffiffiffiffiffi
ap

p XN
j¼1

ð�1Þjcj; Sr ¼
ffiffiffiffiffiffi
ap

p XN
j¼1

cj: ð48Þ
3. Analysis and discussion

This section will be devoted to the discussion of the load transfer from piezoelectric actuators to the host
structure and the behaviour of the resulting wave propagation under different material anisotropies and
loading conditions. In the following discussion, the material mismatch is defined as q ¼ pE

2Ea
and the block

stress is defined as rB = eaEz.

3.1. Validation of the model

To verify the validity of the current model, consider first the quasistatic behaviour of actuators bonded
to an anisotropic host medium. The material constants of the actuator and the host medium are given as
(Park and Sun, 1994)

Actuator
cðaÞ11 ¼ 13:9� 1010 Pa; cðaÞ12 ¼ 6:78� 1010 Pa; cðaÞ13 ¼ 7:43� 1010 Pa; cðaÞ33 ¼ 11:5� 1010 Pa;

cðaÞ44 ¼ 2:56� 1010 Pa; eðaÞ31 ¼ �5:2 C=m2; eðaÞ33 ¼ 15:1 C=m2; eðaÞ15 ¼ 12:7 C=m2;

eðaÞ11 ¼ 6:45� 10�9 C=Vm; eðaÞ33 ¼ 5:62� 10�9 C=Vm:
Orthotropic medium
c11 ¼ 13:92� 1010 Pa; c22 ¼ 160:7� 1010 Pa;

c33 ¼ 7:07� 1010 Pa; c12 ¼ 6:44� 1010 Pa:



G.L. Huang, C.T. Sun / International Journal of Solids and Structures 43 (2006) 1291–1307 1299
Isotropic medium
E ¼ 5:4� 1011 Pa; m ¼ 0:3:
To compare with the prediction by the current model, finite element method (FEM) is conducted using
commercially available finite element code ANSYS to analyse the static stress distribution along a surface-
bonded piezoelectric actuator. Two-dimensional coupled-field element (four nodes ‘‘PLANE13’’) with three
degrees of freedom per node (uy,uz,V) has been chosen for both the host medium and the piezoelectric actu-
ator. A voltage is generated across the thickness of the actuator by applying different electric potentials to
nodes along the upper and lower surfaces.

It should be noted that an isotropic medium will satisfy the relation c33 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p � c12
� �

. For the iso-
tropic medium, the effective modulus E in Eq. (36) will result in E ¼ E=ð1� m2Þ (Wang and Meguid, 2000)
and therefore the same interfacial shear stress s* can be obtained if the same effective modulus is used for
both anisotropic and isotropic media.

In the current example, the orthotropic and isotropic media have the same effective modulus E, which
results in q = 3.0, as defined in Eq. (36). Our analytical model predicts that interfacial stress uniquely de-
pends on q for the static cases in considering the effect of the material properties. The comparison of s� ¼ s

rB
in Fig. 3 for the case where the ratio between the length and the thickness of the actuator a = a/h = 20 con-
firms the feasibility of the present model. It is very interesting to mention that FEM results from orthotro-
pic and isotropic media give very close interfacial stress distributions for the same material mismatch q. The
discrepancy between the analytical prediction and the FEM results may be caused by the one-dimensional
assumption of the actuator.

3.2. Dynamical stress distribution along the interface

Fig. 4 shows the real part of the normalized dynamic shear stress distribution s* = s/rB along the inter-
face between an actuator and the matrix for the same anisotropic host medium in Fig. 3 where a = a/h = 20
-1 -0.5 0 0.5 1
y/a

-0.5

-0.25

0

0.25

0.5

τ 
∗

Current model
FEM Anisotropic
FEM Isotropic

Fig. 3. Comparison of distribution of the interfacial shear stress.
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Fig. 4. Effects of loading frequency upon the interfacial shear stress.
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and qa/qH = 1, with qa and qH being the mass density of the actuator and the host medium, respectively.
The wave number (ka) shows significant effects upon the load transfer, as evidenced by the increase of the
stress level in the region of y = �0.9a–0.9a with increasing ka.

To investigate the effect of material anisotropy upon the dynamic load transfer predicted from the cur-
rent model, numerical simulation is conducted. Fig. 5 shows the effect of the Poisson ratio vyz = c12/c11
upon the real part of the dynamic interfacial stress s* for ka = 2, qa/qH = 1, c22/c11 = 3 and c33/c11 =
0.1. It can be found that the interfacial shear stress in the region of y = 0.3a–0.8a will increase with the in-
crease of ratio c12/c11. Fig. 6 shows the effect of c33/c11 upon the real part of the dynamic interfacial stress s*
for ka = 2, qa/qH = 1, c22/c11 = 3 and c12/c11 = 0.15. The interfacial shear stress in the region of y = 0.3a–
0.8a will decrease with the increase of the ratio c33/c11. Comparing the results in Figs. 5 and 6, it is inter-
esting to note that the dynamic interfacial stress is relatively insensitive to the change of the Poisson ratio
but is sensitive to the change of the shear modulus c33. Fig. 7 shows the effect of c22/c11 upon the real part of
the dynamic interfacial stress s* for ka = 2, qa/qH = 1, c33/c11 = 0.3 and c12/c11 = 0.3. It is observed that the
material anisotropy will cause a significant change on the dynamic interfacial stress, which indicates that we
should consider the effects of the material anisotropy properly.

3.3. Singular stress field around the actuator

Another interesting issue is the local stress field around the tips of the actuators. The normalized dy-
namic stress intensity factors S� ¼ S=rB

ffiffiffiffiffiffiffiffi
2pa

p
is depicted in Fig. 8 for ka = 2, qa/qH = 1, c12

c11
¼ 0:3

and c33
c11

¼ 0:3. It shows a significant effect of the material anisotropy c11/c22 upon the singular stress field
around the tip of the actuator. With the increase of the length of the actuator (a/h), the singular field will
approach a steady state, as evidenced by the fact that S* tends to a constant for large a/h. The variation
of the normalized stress intensity factors S* is shown in Fig. 9. It is observed that the material combination
q has significant effects upon the singular stress at the tips of the actuator. It is interesting to note that S*
is not sensitive to the loading frequency until ka approaches 10.
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3.4. Wave propagation in the host medium

Fig. 10 shows the amplitude of the resulting elastic wave propagation from a single actuator r�
y ¼ ry=rB

in the host medium for ka = 2, qa/qH = 1, a = 10, c22c11
¼ 11:53; c12

c11
¼ 0:46 and c33

c11
¼ 0:51. High stress concen-

tration can be observed around the tips of the actuator. The stress will be reduced with the distance from
the actuator and eventually generate a Rayleigh wave, which propagates with a constant amplitude along
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the surface of the matrix. Fig. 11 shows the corresponding results for ka = 2, qa/qH = 1, a = 10,
c22
c11

¼ 2:53; c12
c11

¼ 0:46 and c33
c11

¼ 0:51. Comparing the wave field in Figs. 10 and 11, it can be found that
the material anisotropy will have significant effects upon the resulting wave field. Fig. 12 shows the ampli-
tude of r�

y ¼ ry=rB in the matrix caused by the same actuator and the host medium discussed in Fig. 8 for
the case where ka = 10.0. A strong wave propagation along h = 450 with respect to z-direction can be
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observed. This is believed to be caused by the increase of the dynamic shear stress along the actuator-matrix
interface due to high loading frequency.
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4. Concluding remarks

A general analytical solution is provided to the dynamic coupled electromechanical behaviour of a pie-
zoelectric actuator bonded to an orthotropic elastic medium under plane electric loading. The analysis is
based upon the use of a piezoelectric line model of the actuator and the solution of the resulting singular
integral equations. The validity of the present model have been demonstrated by application to specific
examples and comparison with the corresponding results obtained from finite element analysis. The numer-
ical results show effects of the geometry, the material combination, the loading frequency and the material
anisotropy of the composite upon the load transfer and the resulting wave propagation.
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Appendix A. Effective material constants

The mechanical and electrical properties of piezoceramic materials can be described by
frg ¼ ½c�f�g � ½e�fEg; fDg ¼ ½e�f�g þ ½e�fEg;

where
�ij ¼
1

2
ðui;j þ uj;iÞ; Ei ¼ �V ;i:
In these equations, {r} and {�} are the stress and the strain fields, {D}, {E} and V represent the electric
displacement, the electric field intensity and the potential, respectively. [c] is a matrix containing the elastic
stiffness parameters for a constant electric potential, [e] represents a tensor containing the piezoelectric con-
stants and [e] represents the dielectric constants for zero strains.

According to the electroelastic line actuator model, rz = 0 and ex = 0. The effective material constants of
the actuator can then be determined as
Ea ¼ c11 �
c213
c33

plane strain;

ea ¼ e13 � e33
c13
c33

plane strain;

ea ¼ e33 þ
e233
c33

plane strain;
where the direction of polarization is designated as being the z-axis.
Appendix B. Basic solution for an orthotropic medium

If the half space shown in Fig. 1 is an orthotropic medium whose principal elastic axes (in the two dimen-
sional case) are parallel to y and z axes, respectively, The constitutive equation is as follows:
ry

rz

ryz

8><
>:

9>=
>; ¼

c11 c12 0

c12 c22 0

0 0 c33

2
64

3
75

ey
ez
eyz

8><
>:

9>=
>;:
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Using the strain–displacement relation and substituting the constitutive relation into the equilibrium
equations give
c11
o2uy
o2y

þ c22
o2uy
o2z

þ ðc12 þ c33Þ
o2uz
oy oz

¼ �qx2uy ;

c33
o2uz
o2y

þ c22
o2uz
o2z

þ ðc12 þ c33Þ
o2uy
oy oz

¼ �qx2uz:
Here uz and uy represent the displacement components along z and y directions. Applying Fourier trans-
form with respect to y defined by
uyðs; zÞ ¼
Z 1

�1
uyðy; zÞeisy dy; uzðs; zÞ ¼

Z 1

�1
uzðy; zÞeisy dy
the equilibrium equations in the Fourier transform domain can be expressed as
c33
o
2uy
o2z

þ ðqx2 � c11s2Þuy � isðc12 þ c33Þ
ouz
oz

¼ 0;

c22
o
2uz
o2z

þ ðqx2 � c33s2Þuz � isðc12 þ c33Þ
ouy
oz

¼ 0:
From these equations, the two unknown functions uyðs; zÞ and uzðs; zÞ can be obtained, which are given
in Eqs. (24) and (25).
Appendix C. Governing equations

The matrix [Q] used in Eq. (39) for solving the single actuator problem is given by
Qlj ¼ � p

E

X1
j¼1

cj
sin½jcos�1gl�
sin½cos�1gl� þ

p

E

X1
j¼1

cj

Z 1

0

P 1
j ðs; glÞ s

g1D1 þ g2D2

D
þ 1

� �
ds

þ a
Ea

m
X1
j¼1

cj

Z p

cos�1gl
cos½kaðcos h� glÞ� cosðjhÞdh� a

Ea

sin½kaðgl þ 1Þ�
sinð2kaÞ

X1
j¼1

cjP 2
j :
In above equations,
gl ¼ yl=a; K ¼ Ka; k ¼ ka; ka ¼ kaa; s ¼ sa
and
P 1
j ðs; glÞ ¼ J jðsÞ

ð�1Þn cosðsglÞ j ¼ 2nþ 1

ð�1Þnþ1 sinðsglÞ j ¼ 2n

(

P 2
j ¼ J jðkaÞ

ð�1Þn sinðkaÞ j ¼ 2nþ 1

ð�1Þn cosðkaÞ j ¼ 2n

(
9>>>>>=
>>>>>;
with Jj (j = 1,2 . . .) being the Bessel functions of the first kind.
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